√天堂最新版在线中文字幕,国产思思99re99在线观看,男人扒开添女人下部免费视频


首頁
產品系列
行業應用
渠道合作
新聞中心
研究院
投資者關系
技術支持
關于創澤
| En
 
  當前位置:首頁 > 新聞資訊 > 電商 > FashionBERT 電商領域多模態研究:如何做圖文擬合  
 

FashionBERT 電商領域多模態研究:如何做圖文擬合

來源:阿里機器智能      編輯:創澤      時間:2020/6/2      主題:其他   [加盟]
隨著 Web 技術發展,互聯網上包含大量的多模態信息(包括文本,圖像,語音,視頻等)。從海量多模態信息搜索出重要信息一直是學術界研究重點。多模態匹配核心就是圖文匹配技術 (Text and Image Matching),這也是一項基礎研究,在非常多的領域有很多應用,例如圖文檢索 (Cross-modality IR),圖像標題生成 (Image Caption),圖像問答系統 (Vision Question Answering), 圖像知識推理 (Visual Commonsense Reasoning)。但是目前學術界研究重點放在通用領域的多模態研究,針對電商領域的多模態研究相對較少,然而電商領域也非常需要多模態匹配模型,應用場景特別多。本文重點關注電商領域圖文多模態技術研究。

多模態匹配研究簡史

跨模態研究核心重點在于如何將多模態數據匹配上,即如何將多模態信息映射到統一的表征空間。早期研究主要分成兩條主線:Canonical Correlation Analysis (CCA) 和Visual Semantic Embedding (VSE)。

CCA 系列方法

主要是通過分析圖像和文本的 correlation,然后將圖像和文本到同一空間。這一系列的問題論文完美,但是效果相對深度學習方法還是有待提高的。雖然后期也有基于深度學習的方案 (DCCA),但是對比后面的 VSE 方法還有一定差距。

VSE 系統方法

將圖像和文本分別表示成 Latent Embedding,然后將多模態 Latent Embedding 擬合到同一空間。VSE 方法又延伸出來非常多的方法例如 SCAN,PFAN。這些方法在通用圖文匹配上已經拿到不錯效果。

隨著 pre-training 和 self-supervised 技術在 CV 和 NLP 領域的應用。2019 年開始,有學者開始嘗試基于大規模數據,使用預訓練的 BERT 模型將圖文信息擬合同一空間。這些方法在通用領域取得很好的效果,這一系列的方法可以參看 VLBERT 這篇 Paper。

基于 BERT 的預訓練圖文模型的主要流程:

1)利用圖像目標檢測技術先識別圖像中的 Region of Interests(RoIs)。

2)把 ROI 當做圖像的 token,和文本 token 做 BERT 多模態融合,這里面有兩個方案:

Single-stream:以 VLBERT 為代表,直接將圖像 token 和文本 token 放入到 BERT 做多模態融合。

Cross-stream:以 ViLBERT 為代表,將圖像 token 和文本 token 先做初步的交互,然后在放入到 BERT。

我們嘗試了 ViLBERT 方法,發現在通用領域效果確實不錯。但是在電商領域,由于提取的 ROI 并不理想,導致效果低于預期。主要原因在于:

1)電商圖像 ROI 太少

電商圖像產品單一,背景簡單提取 ROI 很少,如圖 1(c)。統計來看,通用領域 MsCoCo 數據,每張圖像可以提取 19.8 個 ROI,但是電商只能提取 6.4 個 ROI。當然我們可以強制提取最小的 ROI,比如 ViLBERT 要求在 10~36 個,VLBERT 要求 100 個。但是當設定最小提取的 ROI 后,又提取了太多了重復的 ROI,可以看圖 1(e)。

2)電商 ROI 不夠 fine-grained

電商圖像單一,提取的 RoIs 主要是 object-level 的產品 (例如,整體連衣裙,T-shirt 等) 。相對文本來說,不夠細粒度 fine-grain,比如文本里面可以描述主體非常細節屬性 (如,圓領,九分褲,七分褲等等)。這就導致圖像 ROI 不足以和文本 token 匹配,大家可以對比一下電商領域的圖 1(c) 和圖 1(d)。再看下通用領域的圖 1(a) 和圖 1(b),你會發現通用領域簡單一些,只要能將圖像中的主體和文本 token alignment 到一起,基本不會太差。

3)電商圖像 ROI 噪音太大

如圖 1(f) 中提取的模特頭,頭發,手指,對于商品匹配來說用處不大。

這也就解釋了,電商領域也采用現有的 ROI 方式,并不能得到非常理想的結果。如果說,針對電商領域重新訓練一個電商領域的 ROI 提取模型,需要大量的數據標注工作。那么有沒有簡單易行的方法做圖文匹配擬合。




FashionBERT 圖文匹配模型

本文我們提出了 FashionBERT 圖文匹配模型,核心問題是如何解決電商領域圖像特征的提取或者表達。Google 在 2019 年年中發表了一篇文章圖像自監督學習模型 selfie,主要思路是將圖像分割成子圖,然后預測子圖位置信息。從而使模型達到理解圖像特征的目的,這個工作對我們啟發很大。我們直接將圖像 split 相同大小的 Patch,然后將 Patch 作為圖像的 token,和文本進行擬合,如圖二所示。使用 Patch 的好處:

圖像 Patch 包含了所有圖像的細節信息。

圖像 Patch 不會出現重復的 ROI 或者太多無用的 ROI。

圖像 Patch 是天然包含順序的,所以解決 BERT 的 sequence 問題。

FashionBERT 整體結構如圖 2,主要包括 Text Embedding, Patch Embedding, Cross-modality FashionBERT,以及 Pretrain Tasks。

Text Embedding

和原始 BERT 一樣,先將句子分成 Token,然后我們采用 Whole Word Masking 技術將整個 Token 進行 masking。Masking 的策略和原始的 BERT 保持一致。

Patch Embedding

和 Text Embedding 類似,這里我們將圖片平均分成 8*8 個 patch。每個 Patch 經過 ResNet 提取 patch 的圖像特征,我們提取 2048 維圖像特征。Patch mask 策略,我們隨機 masked 10% 的 patch,masked 的 patch 用 0 代替。同時在 Segment 字段我們分別用 "T" 和 "I" 區分文 本token 輸入和圖像 patch 輸入。

Cross-modality FashionBERT

采用預訓練的 BERT 為網絡,這樣語言模型天然包含在 FashionBERT 中。模型可以更加關注圖文匹配融合。

FashionBERT 模型在 pretrain 階段,總共包含了三個任務:

1  Masked Language Modeling (MLM)

預測 Masked Text Token,這個任務訓練和參數我們保持和原始的 BERT 一致。

2  Masked Patch Modeling (MPM)

預測 Masked Patch,這個任務和 MLM 類似。但是由于圖像中沒有 id 化的 token。這里我們用 patch 作為目標,希望 BERT 可以重構 patch 信息,這里我們選用了 KLD 作為 loss 函數。

3  Text and Image Alignment

和 Next Sentence Prediction 任務類似,預測圖文是否匹配。正樣本是產品標題和圖片,負樣本我們隨機采樣同類目下其他產品的圖片作為負樣本。

這是一個多任務學習問題,如何平衡這些任務的學習權重呢?另外,還有一個問題,目前很多實驗指出 BERT 中 NSP 的效果并不一定非常有效,對最終的結果的影響不是特別明朗。但是對于圖文匹配來說,Text and Image Alignment 這個 loss 是至關重要的。那么如何平衡這幾個任務的學習呢?這里我們提出 adaptive loss 算法,我們將學習任務的權重看做是一個新的優化問題,如圖 3 所示。FashionBERT 的 loss 是整體 loss 的加和,由于只有三個任務,其實我們可以直接得到任務權重 W 的解析解(具體的求解過程可以參考我們論文,這里不再贅述)。

整個 w 的學習過程可以看做是一個學生想學習三門功課,w 的作用是控制學習的關注度,一方面控制別偏科,一方面總成績要達到最高。具體 adaptive loss 算法,可以參看論文。從實際的效果來看 w,隨著訓練的迭代關注不同的任務,達到對任務做平衡的目的。

業務應用

目前 FashionBERT 已經開始在 Alibaba 搜索多模態向量檢索上應用,對于搜索多模態向量檢索來說,匹配任務可以看成是一個文文圖匹配任務,即 User Query (Text)-Product Title (Text) - Product Image (Image) 三元匹配關系。FashionBERT 從上面的模型可以看到是一個基礎的圖文匹配模型,因此我們做了 Continue Pretrain 工作,同時加入 Query,Title,Image Segment 區分,如圖四所示。和 FashionBERT 最大的區別在于我們引入三個 segment 類型,“Q”,“T”,“I” 分別代表 Query,Title,Image。






迎賓機器人企業【推薦】

2022年迎賓機器人企業:優必選、穿山甲、創澤智能、慧聞科技、杭州艾米、廣州卡伊瓦、勇藝達、睿博天米、銳曼智能、康力優藍、云跡科技、南大電子、獵戶星空、瞳步智能

賽迪觀點:再提現代制造業,西部大開發賦予制造業發展新方向

中共中央國務院關于新時代推進西部大開發形成新格局的指導意見》發布,明確提出要充分發揮西部地區比較優勢,推動具備條件的產業集群化發展

基于深度學習目標檢測模型優缺點對比

深度學習模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD

傳統目標檢測算法對比

SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目標檢測算法優缺點對比及使用場合比較

兩大項目落地城陽,意向總投資達50億元

5月30日上午,中科院理化技術研究所青島未來大健康技術創新研究院項目和創澤人工智能項目簽約儀式順利舉行,兩大項目落地城陽,意向總投資達50億元

太空旅行時代到了!馬斯克載人飛船發射成功

馬斯克創辦的民營航天公司SpaceX將兩名NASA的宇航員Doug Hurley和Bob Behnken送入太空

馬斯克,人類的下一個哥倫布

馬斯克認為,終有一天坐飛船會像坐飛機一樣實惠、便利,“SpaceX將使得太空旅行像航空旅行一樣簡單。”

山東省申報第二批全國鄉村旅游重點村擬推薦名單

索引號:11370000MB2847723P/2020-00101,確定擬推薦濟南市長清區馬套村等40個單位申報第二批全國鄉村旅游重點村,現將名單予以公示,公示期自即日起至6月1日

山西省城市生活垃圾分類管理規定

2020年4月13日,山西省人民政府第65次常務會議通過《山西省城市生活垃圾分類管理規定》

5G+人工智能:全面賦能未來社區智能升級

利用 AI 算法和相關數據分析,建立社區民眾生活、商家運營、物業服務的全場景連接,全面提升未來社區的便捷智能感受

5G+物聯網:全力推動未來社區萬物互聯

5G 作為新一代通信技術,全面連接社區內人、機、物,使得科技與人文的結合全面滲透到社區的生活、服務、治理各方面,讓未來社區成為萬物互聯的社區

杭州步行街智慧街區

實時感知街區動態,通過對客流趨勢、客流密度等信息的分析,實時掌握街區動態,避免踩踏等不安全事件的發生。項目的建設開啟了現代化街區智慧管理、智慧服務的新篇章

迎賓機器人企業【推薦】

2022年迎賓機器人企業:優必選、穿山甲、創澤智能、慧聞科技、杭州艾米、廣州卡伊瓦、勇藝達、睿博天米、銳曼智能、康力優藍、云跡科技、南大電子、獵戶星空、瞳步智能

山東機器人公司準獨角獸企業-創澤智能

山東機器人公司,創澤機器人榮獲山東省工信廳人工智能領域的準獨角獸的稱號,是中國工信部人工智能產業創新重點任務揭榜優勝單位

消毒機器人優勢、技術及未來發展趨勢

消毒機器人有哪些優勢,未來發展趨勢

家庭陪護機器人

家庭陪護機器人能在家中起到監控安全陪護具有人機互動交互服務多媒體娛樂價格查詢等

兒童陪護機器人

兒童陪護機器人與孩子互動陪伴玩耍學習價格問詢等功能說明使用指南介紹

展館智能機器人

展館智能機器人可講解自主行走語音交互咨詢互動價格咨詢等功能介紹以及表情展現能力

智能講解機器人

智能講解機器人正在劍橋講解演示咨詢互動移動宣傳價格問詢等功能說明介紹

智能接待機器人

智能接待機器人迎賓服務來賓問詢答疑價格查詢

智能主持機器人

智能主持機器人參與主持了寧夏的云天大會并完成了大會的接待任務多才多藝載很受歡迎

超市智能機器人

超市智能機器人能幫助商家吸引客戶道路指引導購價格查詢

4s店智能機器人

4s店智能機器人迎賓銷售導購數據收集分析價格問詢等

展廳智能機器人

展廳智能機器人可用于接待講解咨詢互動價格查詢等功能
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機器人未來3-5年能夠實現產業化的方
» 導診服務機器人上崗門診大廳 助力醫院智慧
» 山東省青島市政府辦公廳發布《數字青島20
» 關于印發《青海省支持大數據產業發展政策措
» 全屋無主燈智能化規范
» 微波雷達傳感技術室內照明應用規范
» 人工智能研發運營體系(ML0ps)實踐指
» 四驅四轉移動機器人運動模型及應用分析
» 國內細分賽道企業在 AIGC 各應用場景
» 國內科技大廠布局生成式 AI,未來有望借
» AIGC領域相關初創公司及業務場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業化空間前景廣闊應用場景豐富
» AI 內容創作成本大幅降低且耗時更短 優
 
== 機器人推薦 ==
 
迎賓講解服務機器人

服務機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導引機器人  移動消毒機器人  導診機器人  迎賓接待機器人  前臺機器人  導覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導診機器人 
版權所有 © 創澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728

  • <button id="4rgfx"></button>
  • 
    
    <cite id="4rgfx"></cite>
  • <code id="4rgfx"><wbr id="4rgfx"></wbr></code>
  • <bdo id="4rgfx"></bdo>
  • <button id="4rgfx"><bdo id="4rgfx"></bdo></button>
    <cite id="4rgfx"></cite><noframes id="4rgfx"><bdo id="4rgfx"></bdo></noframes>
    主站蜘蛛池模板: 兴城市| 昌乐县| 工布江达县| 夹江县| 宁津县| 丽江市| 无极县| 余江县| 甘孜县| 新密市| 秦安县| 嘉定区| 全椒县| 马山县| 西贡区| 临沂市| 静海县| 太仓市| 桐庐县| 浮山县| 兴城市| 洪洞县| 特克斯县| 和政县| 大关县| 胶州市| 满洲里市| 广南县| 晋州市| 抚州市| 文山县| 兴和县| 来宾市| 安康市| 肥东县| 永泰县| 沽源县| 日土县| 册亨县| 奉新县| 阜康市|